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SUMMARY

A new method for the computational analysis of fluid–structure interaction of a Newtonian fluid with
slender bodies is developed. It combines ideas of the fictitious domain and the mortar element method
by imposing continuity of the velocity field along an interface by means of Lagrange multipliers. The key
advantage of the method is that it circumvents the need for complicated mesh movement strategies
common in arbitrary Lagrangian–Eulerian (ALE) methods, usually used for this purpose. Copyright
© 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

There exist many examples where the motion of thin-walled, leaflet-like structure is driven by
the motion of a fluid. A typical example in biomechanics is the opening and closing behaviour
of aortic heart-valves, which is a delicate interaction between blood flow and geometrical and
stiffness properties of the heart-valve leaflets, see de Hart et al. [1] and Cacciola et al. [2].

In modelling fluid–structure interaction, the fluid phase is most conveniently described with
respect to a Eulerian reference frame, while a Lagrangian formulation is more appropriate for
the solid phase. However, these formulations are incompatible. The arbitrary Lagrangian–
Eulerian (ALE) formulation first proposed by Donea [3], effectively combines these two
formulations and is often applied for fluid–structure interaction simulations. The ALE
formulation requires a continuous adaptation of the mesh without modification of the mesh
topology. Due to the finite deformation of a thin leaflet within the computational domain it
is generally difficult to adapt the mesh in such a way that a proper mesh quality is maintained
without changing the mesh topology. An example of this will be given in Section 6.1.
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Alternatively, remeshing can be performed using a Lagrangian formulation or in conjunc-
tion with an ALE formulation, where remeshing is only performed if the mesh quality has
degenerated too much. The change in mesh topology during remeshing requires the use of
interpolation techniques to recover history variables on the newly generated mesh. This not
only introduces artificial diffusivity, but it is also difficult and/or time-consuming to perform
with sufficient robustness and accuracy for three-dimensional problems. To resolve this
problem, a new fictitious domain/mortar element (FD/ME) method is proposed, where the
fluid is described using a fixed mesh in an Eulerian setting and a Lagrangian formulation for
the solid. It is based on a combination the fictitious domain method, as described by
Glowinski et al. [4], and the mortar element method, developed by, among others, Bernardi et
al. [5] and Maday et al. [6].

The fictitious domain (FD) method is based on the imposition of velocity constraints
associated with rigid internal boundaries by means of Lagrange multipliers. It has similarities
with the so-called immersed boundary technique of Peskin and McQueen [7], in which at a
number of control points (at the intersection of fluid and solid), tension forces are imposed
pointwise and distributed to neighbouring nodes. A variant of this method, the immersed
interface method, has been proposed in Reference [8]. More recently, Bertrand et al. [9] have
introduced a special variant of the FD method by using point collocation, circumventing the
judicious choice of base functions of the Lagrange multiplier.

The mortar element (ME) method allows coupling of domains with dissimilar element
distributions or interpolation order using Lagrange multipliers as outlined by Schwab [10]. The
edges of these domains must have the same geometrical position, in other words element edges
should overlap and the intersection of the domains should be empty.

The FD/ME proposed in this work is based on a Lagrange multiplier formulation and on
concepts and interpolation schemes of the ME method but without the requirement that
element edges should overlap. In this sense, it incorporates ideas of the FD method. The
current implementation is limited to two-dimensional problems, but it clearly demonstrates the
capabilities of the computational scheme, which is the objective of this paper.

First, the problem definition in conjunction with the governing equations are given. The
fluid is modelled using the Navier–Stokes equations in a Eulerian setting and the solid is
described with a neo-Hookean material model in an updated Lagrange formulation. Then the
Lagrange multiplier formulation is outlined based on the weak formulation of both the fluid
and solid domain. Next, the FD/ME method is validated for Stokes flow conditions by
comparison with an updated mesh (ALE-like) formulation. Subsequently, the capabilities are
demonstrated for the two-dimensional motion of a flexible leaflet in a periodic flow. This
example mimics the motion of heart-valve leaflets in a two-dimensional setting.

2. PROBLEM DEFINITION AND GOVERNING EQUATIONS

The objective is to analyse the motion of a slender body (e.g. leaflet) inside a Newtonian fluid.
In this work, the typical dimension of the solid body in the longitudinal direction is chosen
large compared with the orthogonal direction (thickness). In fact, as far as fluid–structure
interaction is concerned, the thickness of the solid body may be neglected. Although a
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volumetric representation of the solid is chosen in this work, shell (three-dimensional) or beam
(two-dimensional) theories could also be used to describe the mechanical behaviour of the solid
body.

2.1. Fluid domain

The fluid is assumed to be isothermal and incompressible and the governing equations within
the fluid domain Vf, in absence of body forces, are given by

r
(u�
(t

+ru� ·9a u� =9a ·(−pI+tf) (1)

9a ·u� =0 (2)

where r denotes the density, t the time, u� the velocity, p the pressure, tf the extra stress tensor
and 9a the gradient operator with respect to the current configuration.

Clearly, the above set of equations must be complemented with appropriate natural and
Dirichlet boundary conditions. For the purpose of this work it is sufficient to consider
Dirichlet boundary conditions only.

The fluid is assumed to be Newtonian, hence the extra stress tensor is given by

tf=2hD (3)

where h denotes the viscosity of the fluid and D denotes the rate of deformation tensor
D=1

2(9a u� + (9a u� )T). Substitution of this constitutive model into Equation (1) yields the well-
known Navier–Stokes equation

r
(u�
(t

+ru� ·9a u� = −9a p+9a ·2hD (4)

Scaling spatial co-ordinates with a characteristic length H (e.g. channel height), velocities with
a characteristic velocity U (e.g. mean velocity) and time with a characteristic time t (e.g.
period), the dimensionless form of the Navier–Stokes equation is given by

St
(u�
(t

+u� ·9a u� = −9a p+
1

Re
29a ·D (5)

where the Strouhal number St and the Reynolds number Re are defined as

St=
H
tU

, Re=
rUH

h
(6)
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2.2. Solid domain

In the absence of inertia terms, the momentum equation for the solid domain Vs reduces to

9a ·(−pI+ts)=0a (7)

while the incompressibility condition is conveniently expressed as

det(F)=1 (8)

where F denotes the deformation tensor, defined as F= (9a 0x� )T, with 9a 0 the gradient operator
with respect to the reference configuration.

The solid is assumed to obey a neo-Hookean material law, hence

ts=G(B−I) (9)

where G is the shear modulus and B the Finger or left Cauchy–Green strain tensor, defined
as B=F ·FT. Expression (9) has been chosen such that the extra stress in the solid vanishes if
F=I.

3. WEAK FORMULATION

Assuming absence of externally applied surface loads, the weak form of the momentum and
continuity equation (1) and (2) are given by

�
6� , r

(u�
(t

+ru� ·9a u� �+ (D6, 2hD)− (p, 9a ·6� )=0 (10)

(q, 9a ·u� )=0 (11)

where ( . , . ) denotes the appropriate inner product on the fluid domain Vf and D6=
1
2(9a 6� +

(9a 6� )T). These must hold for all admissible weighting functions 6� and q. Temporal discretization
is achieved using an implicit backward-Euler scheme. Consider the time interval tn� tn+1, such
that Dt= tn+1− tn, then

(u�
(t
:

u� n+1−u� n
Dt

(12)

This choice leads to a scheme that is first-order accurate in time only. This is sufficient to
demonstrate the characteristics of the proposed method, but for many applications higher-
order approximations are recommended. Consequently, Equation (10) is rewritten, omitting
the subscript n+1, as
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�
6� , r

u� −u� n
Dt

+ru� ·9a u� �+ (D6, 2hD)− (p, 9a ·6� )=0 (13)

For the solid phase an updated Lagrangian formulation is chosen. Let Fn denote the
deformation from the initial state to the state at t= tn, and Fn+1 the deformation tensor from
t= tn to t= tn+1, then

F=Fn+1 ·Fn (14)

For notational convenience we shall, as before, omit the subscript n+1; hence, in the sequel
F refers to the deformation tensor from the previous state to the current state. Then, the extra
stress tensor of the solid at the current time t can be written as

ts=F ·tn ·FT+G(F ·FT−I) (15)

where tn denotes the extra stress at time t= tn and I the second-order unit tensor. Conse-
quently, the weak form within an updated Lagrangian framework of the solid can be written
as

[(96� )T, F ·tn ·FT+G(F ·FT−I)]− [p, 9a ·6� ]=0 (16)

[q, det(F)−1]=0 (17)

where [ . , . ] denotes the appropriate inner product on the solid domain Vs.
Notice that there is a distinct difference between Equation (10) and equation (16): in the

weak form of the momentum equation of the fluid the domain is known and fixed in space,
unless specified otherwise, while the position of the solid domain is a priori unknown. As a
consequence, for instance, the gradient operator in Equation (16) depends on the solution,
while the gradient operator in Equation (10) is independent of the velocity field u� . This
situation changes whenever the computational domain of the fluid is adapted to the computed
velocity field, for instance, to follow the motion of the slender body. For the time being,
however, the fluid domain is assumed fixed in space.

In the Lagrangian formulation it is customary to chose the displacement field db as the
unknown. The displacement during a time step tn� tn+1 follows from

db =x� n+1−x� n (18)

where x� n, x� n+1 denote the position of a material point at time t= tn and t= tn+1 respectively.
The velocity during the time interval tn� tn+1 is related to the displacement by the following
first-order approximation:

u� = db
Dt

(19)
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4. MORTAR ELEMENT METHOD

Coupling of the fluid and solid domain is straightforward if equal-order discretization of the
fluid and solid domain is used and nodes and element boundaries are coincident along the
relevant boundary. In this case, the fluid mesh must be updated continuously to accommodate
for the motion of the solid domain using the ALE formulation. In this section a formulation
is proposed that circumvents the need to update the fluid mesh.

For non-equal and/or non-conforming discretizations, but still coincident boundaries, the
so-called mortar element method has been developed. Applied to fluid–structure interaction,
coupling between the fluid and solid phase is achieved by using a Lagrange multiplier to
weakly enforce the constraint u� s−u� f=0a along the interface boundary G. This procedure is
outlined for the infinitesimal strain limit for linear elastic bodies in Appendix A, and may be
generalized to

�
6� f, r

(u� f
(t

+ru� f ·9a u� f�+ (D6, 2hD)− (p, 9a ·6� f)−
&

G
g� ·6� f dG=0 (20)

(q, 9a ·u� f)=0 (21)

[(96� s)T, F ·tn ·FT+G(F ·FT−I)]− [p, 9a ·6� s]+
&

G
g� ·6� s dG=0 (22)

[q, det(F)−1]=0 (23)

&
G

lb ·(u� s−u� f) dG=0 (24)

The subscripts ‘f’ and ‘s’ have been introduced to differentiate between the fluid and solid
domain variables respectively. The Lagrange multiplier is denoted by g� , with lb the associated
weight function, and may be interpreted as the surface force exerted on the fluid and solid
along the interface G to maintain the coupling between solid and fluid.

In fluid–structure interaction problems, the location of the interface boundary G depends on
the solution u� s. Consequently, to maintain coincident fluid and solid boundaries the fluid
domain needs to be updated accordingly. This can effectively be achieved using the ALE
method or by using remeshing techniques. However, for arbitrary finite deformations of the
solid it is difficult to robustly maintain mesh quality, in particular for three-dimensional
problems. Two-dimensional examples of this will be given later on.

To circumvent the need to update the mesh of the fluid domain a new approach is proposed.
It combines features of the so-called fictitious domain method, developed by Glowinski et al.
[4], and the ME method [6]. Consequently, we shall label this formulation the FD/ME
approach. It is governed by Equations (20)–(24).

The novelty of the current approach is that the surface G does not necessarily have to be
aligned with element boundaries of the fluid domain. In fact, G does not necessarily have to
coincide with a boundary of the solid domain either, although it is convenient. A typical
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example is given in Figure 3, where the interface is aligned with one side of the solid body.
Clearly, the interface G intersects the fluid domain in an arbitrary way. The alignment with
only one side of the solid body appears to be particularly suitable for problems with slender
solid bodies of which the thickness may be assumed negligible as far as the interaction with the
fluid flow is concerned. Otherwise, the complete boundary of the solid needs to be chosen as
the interface G. In that case, however, care should be taken at non-zero Strouhal and Reynolds
numbers, since the fluid enclosed by G must be accelerated as well.

The resulting set of coupled equations (20)–(24) is non-linear and needs to be solved
iteratively. Each of the couples (20)–(21) and (22)-(23) is linearized using Newton’s method.
The coupling through Equation (24) is enforced at each Newton iteration using the most
recently computed location of the boundary G. The location of the interface G is not known
a priori and linearization of this aspect is difficult. Since the repositioning of the interface
location is not taken into account during the linearization process, the quadratic convergence
rate of the Newton scheme is not obtained but the chosen strategy has proven to give
satisfactory results.

At each integration point used to compute the integrals related to the Lagrange multipliers,
the isoparametric co-ordinates of the solid are obtained trivially since the spatial discretization
coincides with the edge of the solid domain. However, the velocity at the associated fluid
particle must be computed as well. This requires identification of the element and the
isoparametric co-ordinates of the fluid particle coincident with the spatial location of the
integration point. Once these co-ordinates are known, the shape functions of the velocity field
are used to express the fluid velocity at the integration point in terms of the nodal velocities
of the fluid domain.

5. DISCRETIZATION

It is well established that the mixed velocity–pressure formulations defined above need to
satisfy the so-called inf–sup condition. A variety of discretization schemes is available that
satisfy this conditions. Here the Crouzeix–Raviart family has been used, in the sense that a
bi-quadratic interpolation for the velocity is used and a linear discontinuous interpolation for
the pressure. The same discretization is chosen for the displacement–pressure combination of
the solid phase.

In combination with the constraint equation (24) coupling fluid to solid velocities with an
arbitrary location of the boundary G, a discontinuous interpolation of the pressure appears to
be mandatory. A continuous interpolation of the pressure, as in the Taylor–Hood family,
produced unsatisfactory results. This can easily be understood by considering a domain with
an internal line boundary, as depicted in Figure 1(a) denoted by the boundary G5. If velocities
are set to zero along this internal boundary, the pressure will be discontinuous across this
boundary. Hence, the use of a continuously interpolated pressure leads to erroneous results.
Although in the FD/ME method the interface G is not necessarily aligned with element
boundaries of the fluid domain, a discontinuity in the pressure field may be expected.

The failure of the Taylor–Hood element in the case of an internal boundary is illustrated
next. In problem A, outlined in Figure 1(a), the fluid domain is enclosed by the boundaries
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Figure 1. (a) Problem A with an internal interface G5, and (b) problem B with a discontinuous internal
boundary characterized by the boundaries G5 and G6.

G1–G4. Along G1 a fully developed inflow velocity profile is prescribed, while along G2 and G5

no-slip boundary conditions are imposed. Along G3 the velocity in the horizontal direction is
set to zero to represent a symmetry condition. Along the outflow direction the horizontal
velocity is set to zero as well. Notice that in this problem the elements on either side of the
internal boundary, G5, share the same node on this part of the boundary. This implies that if
the pressure is interpolated continuously, as in the Taylor–Hood element, it is continuous
across the boundary G5. To allow for a discontinuous interpolation of the pressure across the
internal boundary in case of the Taylor–Hood element, a slight modification is made, labelled
problem B, as outline in Figure 1(b). In this case a very small wedge is created by including
boundary G6, such that elements on either sides of the internal boundary have different nodes.
This clearly allows for a discontinuous interpolation of the pressure field across the internal
boundary. The resulting streamlines at a Reynolds number of 10 are depicted in Figure 2.
Figure 2(a) displays the streamlines for the Crouzeix–Raviart element for problem A. This is
clearly significantly different form the incorrect results of the Taylor–Hood element, as
depicted in Figure 2(b). Using a discontinuous internal boundary, problem B, the Taylor–
Hood produces the correct result, as shown in Figure 2(c).

The discretization of the Lagrange multiplier g� , and hence also lb , has been chosen linear,
discontinuous and spatially coincident with element boundaries of the solid domain: along
each element boundary of solid domain that coincides with G a piecewise linear discontinuous
interpolation of lb is chosen. More generally, the interpolation order of the Lagrange multiplier
field is chosen one order lower than the interpolation order of the velocity field. The choice of
a discontinuous quadratic interpolation of the Lagrange multiplier would lead to an overcon-
strained set of equations. This can be understood by investigating the case were G consists of
two neighbouring element edges. Suppose that a quadratic interpolation of the displacement
field is chosen as well as a discontinuous quadratic interpolation of the Lagrange multiplier.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 743–761
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Figure 2. Streamlines at Re=10 for (a) Crouzeix–Raviart element, (b) Taylor–Hood element and (c)
Taylor–Hood element but for the problem with a discontinuous internal boundary.

Then, the Lagrange multiplier generates 12 constraints, while the boundary G (having five
nodes) has only ten degrees of freedom. The above choice has been found to give optimal
results and is consistent with results from ‘regular’ ME applications. The integral along G, as
in Equations (20), (22) and (24), is computed by means of a Gaussian integration rule. Given
the lower-order interpolation of the Lagrange multiplier compared with the velocity interpola-
tion, Gauss–Lobatto integration is not feasible. Furthermore, aligning the interface G with
element boundaries of the solid domain as described above, spatial resolution of the solid
domain preferably needs to be higher than that of the fluid domain. An example of this is
given in Figure 3.

6. VALIDATION AND APPLICATION

The examined problem is illustrated in Figure 4(a) in conjunction with the mesh for both the
fluid and the solid body. The fluid domain in enclosed by the boundaries G1–G4. In Figure 4(b)
a close-up of the mesh near the attachment of the solid to boundary G2 is shown. The solid

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 743–761
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Figure 3. Example of interface (G) location, represented by the thick line.

Figure 4. (a) Geometry and mesh of the test problem, (b) close-up near the attachment point of the
beam.

may be interpreted as a thin beam that is fixed at the right end, and is modelled using
neo-Hookean material behaviour. Connection between fluid and solid is established along the
interface boundary G only. In the initial configuration, G is aligned with element boundaries
of the fluid as can be seen in Figure 4(b).

Along G2 all velocities are suppressed, while along G4 symmetry conditions are imposed,
meaning that velocities in the horizontal direction are suppressed. The velocity components at
G1 and G3 are coupled by means of periodic boundary conditions.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 743–761
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Along G1 the flow rate is prescribed according to

Q=U sin(2pt), U=10 (25)

meaning that the period T=1. In terms of velocities, the flow rate can be written as

Q= −
&

G1

u� ·n� dG (26)

where n� is the unit outward normal to G1. Using the shape functions of the velocity
components and performing a numerical integration, these equations can be transformed into
an algebraic equation, resulting in a linear equation coupling the velocity degrees of freedom
along the interface boundary. This equation is imposed by means of an additional Lagrange
multiplier. In conjunction with the periodicity of the flow velocity, this yields a unique velocity
distribution along the inflow and outflow boundary.

If H=1 represents the horizontal dimension of the flow domain, then the height equals 4H,
the thickness of the beam is 0.0212H and the length of the beam is 0.8H.

The viscosity h=10, the modulus G is chosen to be 107. The density is either set to zero in
the limit of Stokes flow, or is chosen as 102. Consequently, for non-Stokes flow conditions the
Strouhal and Reynolds number are

St=0.1, Re=100 (27)

6.1. Stokes flow

To investigate the performance of the proposed scheme a comparison is made with a method
where the mesh of the fluid domain is adjusted to follow the motion of the fluid and the solid
body. This is done at Stokes flow conditions, hence at St=0 and Re=0. The ME method as
described by Equations (20)–(24) is used to couple the fluid to the solid domain. After each
time step, the mesh is adjusted to maintain optimal element quality without changing the
topology using Laplacian smoothing [11–14].

Figure 5 demonstrates the location of the leaflet using both a fixed mesh and a moving
mesh. Figure 6 shows the tip displacement of the beam computed with both the ‘updated-
mesh’ approach (solid line) and the ‘fixed-mesh’ approach (circles). The two methods produce
almost identical results. However, for t/T\0.1, the mesh updating procedure fails to produce
a sufficiently good quality mesh and the computation subsequently breaks downs. In contrast,
using the new method very large deflections of the beam can be achieved as is demonstrated
in the next section.

6.2. Na6ier–Stokes flow

To demonstrate the capabilities of the FD/ME method using a fixed fluid domain, the motion
of the beam is analysed at St=0.1 and Re=100. Figure 7 shows a sequence of computed flow
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Figure 5. Position of leaflet using (a) a moving mesh or (b) a fixed mesh at t/T=0.1.

fields and positions of the beam at increasing t/T ratio. Velocity vectors are shown at the
mid-point nodes of the elements only for clarity of presentation.

The purpose of this example is to demonstrate some of the key features of the proposed
method: it shows the analysis of large, complex, time-dependent motions of thin flexible bodies
driven by viscous fluid forces, without the necessity of using complicated mesh updating
algorithms as in the ALE method.

Starting at rest, during the first part of the cycle (a)–(e), the beam is pushed upward by the
flow until the flow rate reaches its maximum. As soon as the flow rate starts to decrease (for
t/T\0.25), the elasticity causes the beam to bounce back, as can be clearly seen in (h)–(j). For
t/T\0.5 the flow reverses, accelerating the beam motion (k)–(n), to reach a fully deflected
configuration when the flow rate reaches its maximum again. For t/T\0.9, the above pattern
repeats itself. This sequence of results clearly demonstrates the fluid–structure interaction
capabilities of the FD/ME method.

A thinner beam, having wall thickness 0.0161H, has also been analysed. This corresponds to
a 24 per cent reduction in wall thickness. In particular, the behaviour during reversal of the
flow rate is distinctly different form the thicker beam, as may be observed in Figure 8. This
example illustrates the feasibility of the current method to investigate the impact of structural
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Figure 6. Comparison of the tip displacement using the moving and the fixed mesh approach. The solid
line represents the result based on the moving mesh, and the circles represent the displacement of the tip

while using a fixed mesh.

changes on fluid–structure interaction. It also demonstrates that due to the presence of viscous
forces the snap-through behaviour of the beam, as present in Figure 8(c)–(f), can easily be
handled by the current formulation without having to introduce path-following algorithms.

7. CONCLUSIONS

A new method to compute the fluid–structure interaction is introduced. It combines features
of the FD method proposed by Glowinski et al. [4] and the ME method of Maday et al. [6].
It appears to be particularly suited for the analysis of the interaction of slender bodies with a
fluid or gas. The method is based on the enforcement of continuity of motion along an
arbitrary interface using Lagrange multipliers. Care should be taken in selecting the discretiza-
tion space of the Lagrange multipliers. The choice that is proposed in this work is to select a
piecewise discontinuous interpolation of one order lower than the discretization of the velocity
and displacement variables, and is chosen spatially coincident with the edges of the elements
along the interface G of the solid domain. Further research is necessary to prove the stability
of this choice, in particular in the case where the mesh size of the solid and fluid domain are
largely different.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 743–761
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Figure 7. Motion of a beam, with wall thickness 0.0212H, driven by pulsatile flow at Sr=0.1 and
Re=100. Each picture also indicates the flow rate with respect to the cycle time.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 743–761
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Figure 7 (Continued)

The key advantage of the proposed method compared with ALE-based methods is that the
FD/ME method does not require any updating of mesh of the fluid domain, although it can
easily be combined with ALE techniques. This makes the FD/ME method particularly

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 743–761
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Figure 7 (Continued)

attractive for three-dimensional calculations, where a robust updating of the mesh to follow
the motion of thin shell-like structures poses major difficulties.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 743–761
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Figure 8. Motion of a beam, with wall thickness 0.0161H, driven by pulsatile flow at Sr=0.1 and
Re=100. Each picture also indicates the flow rate with respect to the cycle time.

The method has been demonstrated for both the Navier–Stokes case and the Stokes limit,
where the fluid is assumed to be purely viscous. Extension to shear thinning fluids is expected
to be straightforward, but application to viscoelastic fluids [15] is expected to be more
complicated.
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APPENDIX A. INFINITESIMAL STRAIN ELASTICITY PROBLEM

To derive the Lagrange multiplier formulation as represented by Equations (20)–(24) it is
instructive to consider the infinitesimal strain limit for a linear elastic problem. In this case,
neglecting inertia forces and volume forces, the momentum equation reduces to

9a ·s=0a (28)

The constitutive model is given by

s=4C : o (29)

with 4C a fourth-order elasticity tensor and o the infinitesimal strain tensor

o=
1
2

(9a db + (9a db )T) (30)

with db the displacement field. This set of equations must be supplemented with appropriate
boundary conditions. Either the displacement field is prescribed along Gu or the external load
vector hb is prescribed along Gp with

s ·n� =hb (31)

To simplify the notation it is assumed that hb =0a in the sequel.
Consider two bodies, Va and Vb, where along an interface G the displacements of the two

bodies should be equal

db a−db b=0a along G (32)

The weak form of the equilibrium equations of each of the individual bodies without
accounting for the interface constraint equation (32) may be derived from the minimization of
the energy functional I(6� ) defined by

Ia(6� a)=
1
2

(o(6� a), 4C : o(6� a))a, for a=a, b (33)

where ( . , . )a denotes the inner product on the domain Va, a=a, b. The displacement
constraint equation (32) may be imposed by means of Lagrange multipliers by defining the
Lagrangian

L(6� a, 6� b, g� )=Ia(6� a)+Ib(6� b)+
&

G
lb ·(6� a−6� b) dG (34)

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 743–761
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Requiring stationarity of the Lagrangian with respect to 6� a, 6� b and the Lagrange multiplier,
giving the associated solution fields db a, db b and g� , yields

(o(6� a): 4C : o(db a))a+
&

G
g� ·6� a dG=0 (35)

(o(6� b): 4C : o(db b))b−
&

G
g� ·6� b dG=0 (36)

&
G

lb ·(db a−db b) dG=0 (37)

This result may be generalized to give Equations (20)–(24).
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